An Elementary Abelian Group of Large rank is not a CI-group

نویسنده

  • Mikhail E. Muzychuk
چکیده

In this paper, we prove that the group Zp is not a CI-group if n¿ 2p − 1 + ( 2p−1 p ), that is there exist two Cayley digraphs over Zp which are isomorphic but their connection sets are not conjugate by an automorphism of Zp. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian p - groups of rank greater than or equal to 4 p − 2 are not CI - groups

In this paper we prove that an elementary Abelian p-group of rank 4p− 2 is not a CI(2)-group, i.e. there exists a 2-closed transitive permutation group containing two non-conjugate regular elementary Abelian p-subgroups of rank 4p − 2, see Hirasaka and Muzychuk (J. Comb. Theory Ser. A 94(2), 339–362, 2001). It was shown in Hirasaka and Muzychuk (loc cit) and Muzychuk (Discrete Math. 264(1–3), 1...

متن کامل

Elementary abelian p - groups of rank 2 p + 3 are not CI - groups

For every prime p > 2 we exhibit a Cayley graph on Z2p+3 p which is not a CI-graph. This proves that an elementary abelian p-group of rank greater than or equal to 2p+ 3 is not a CI-group. The proof is elementary and uses only multivariate polynomials and basic tools of linear algebra. Moreover, we apply our technique to give a uniform explanation for the recent works of Muzychuk and Spiga conc...

متن کامل

An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...

متن کامل

p-GROUPS WITH MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF RANK 2

Let p be an odd prime number and G a finite p-group. We prove that if the rank of G is greater than p, then G has no maximal elementary abelian subgroup of rank 2. It follows that if G has rank greater than p, then the poset E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the torsion-free rank of the group of endotrivial kG-modules is one, for any field k of charac...

متن کامل

An answer to Hirasaka and Muzychuk : every p - Schur ring over C 3 p is Schurian Dedicated to the memory of Jiping ( Jim )

In [HiMu] the authors, in their analysis on Schur rings, pointed out that it is not known whether there exists a non-Schurian p-Schur ring over an elementary abelian p-group of rank 3. In this paper we prove that every p-Schur ring over an elementary abelian p-group of rank 3 is in fact Schurian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 264  شماره 

صفحات  -

تاریخ انتشار 2003